If the line $y\, = \,mx\, + \,7\sqrt 3 $ is normal to the hyperbola $\frac{{{x^2}}}{{24}} - \frac{{{y^2}}}{{18}} = 1,$ then a value of $m$ is
$\frac{2}{{\sqrt 5 }}$
$\frac{{\sqrt 5 }}{2}$
$\frac{{\sqrt {15} }}{2}$
$\frac{3}{{\sqrt 5 }}$
If $(a -2)x^2 + ay^2 = 4$ represents rectangular hyperbola, then $a$ equals :-
The equation of the tangent to the conic ${x^2} - {y^2} - 8x + 2y + 11 = 0$ at $(2, 1)$ is
The locus of the point of intersection of the lines $(\sqrt{3}) kx + ky -4 \sqrt{3}=0$ and $\sqrt{3} x-y-4(\sqrt{3}) k=0$ is a conic, whose eccentricity is .............
The length of the latus rectum and directrices of a hyperbola with eccentricity e are 9 and $\mathrm{x}= \pm \frac{4}{\sqrt{3}}$, respectively. Let the line $y-\sqrt{3} \mathrm{x}+\sqrt{3}=0$ touch this hyperbola at $\left(\mathrm{x}_0, \mathrm{y}_0\right)$. If $\mathrm{m}$ is the product of the focal distances of the point $\left(\mathrm{x}_0, \mathrm{y}_0\right)$, then $4 \mathrm{e}^2+\mathrm{m}$ is equal to ...........
Let the tangent drawn to the parabola $y ^{2}=24 x$ at the point $(\alpha, \beta)$ is perpendicular to the line $2 x$ $+2 y=5$. Then the normal to the hyperbola $\frac{x^{2}}{\alpha^{2}}-\frac{y^{2}}{\beta^{2}}=1$ at the point $(\alpha+4, \beta+4)$ does $NOT$ pass through the point.