10-2. Parabola, Ellipse, Hyperbola
hard

If the line $y\, = \,mx\, + \,7\sqrt 3 $ is normal to the hyperbola $\frac{{{x^2}}}{{24}} - \frac{{{y^2}}}{{18}} = 1,$ then a value of $m$ is 

A

$\frac{2}{{\sqrt 5 }}$

B

$\frac{{\sqrt 5 }}{2}$

C

$\frac{{\sqrt {15} }}{2}$

D

$\frac{3}{{\sqrt 5 }}$

(JEE MAIN-2019)

Solution

$\frac{{{x^2}}}{{24}} – \frac{{{y^2}}}{{18}} = 1\,\,\,\,\, \Rightarrow a\, = \sqrt {24} :b\, = \sqrt {18} $

Paramentric normal:

$\sqrt {24} \cos \theta .x + \sqrt {18} .y\cot \theta  = 42$

At $x = 0;y = \frac{{42}}{{\sqrt {18} }}\tan \theta  = 7\sqrt 3 $      (from given equation)

$ \Rightarrow \tan \theta  = \sqrt {\frac{3}{2}}  \Rightarrow \sin \theta  =  \pm \sqrt {\frac{3}{5}} $

slope of parametric normal $ = \frac{{ – \sqrt {24} \cos \theta }}{{\sqrt {18} \cot \theta }} = m$

$ \Rightarrow m =  – \sqrt {\frac{4}{3}} \sin \theta  =  – \frac{2}{{\sqrt 5 }}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.